Indah Putri Lestari (17)
XI IPS 2
Matematika
Langkah - Langkah Menggambar Grafik Fungsi Menggunakan Turunan
Berikut langkah-langkah mengambar grafik suatu fungsi menggunakan turunan :i). Menentukan titik potong (tipot) dengan sumbu-sumbu koordinat (sumbu X dan sumbu Y). Titik potong sumbu X, substitusi y=0y=0 . Titik potong sumbu Y, substitusi x=0x=0 .
ii). Menentukan titik-titik stasioner dan jenisnya (titik balik minimum, titik balik maksimum, dan titik belok).
iii). Menentukan titik bantuan lain agar grafiknya lebih mudah sketsa, atau bisa juga secara umum menentukan nilai yy untuk xx besar positif dan untuk xx besar negatif.Contoh :
1). Gambarlah grafik kurva y=3x2−x3y=3x2−x3.
Penyelesaian : i). Menentukan titik potong pada sumbu-sumbu : *). Tipot sumbu X, substitusi y=0
y=0 y=0→y 0=3x2−x3
3x2−x3=0
x2(3−x)
x=0 ∨ x =3
Sehingga titik potong sumbu X adalah (0,0) dan (3,0). *). Tipot sumbu Y, substitusi x=0
y=3x2−x3 = 3.02−03 = 0y = 3x2−x3 = 3.02−03 = 0
Sehingga titik potong sumbu Y adalah (0,0).
ii). Menentukan titik-titik stasioner,
Fungsi : y=3x2−x3 f′(x)=6x−3x2f′(x)=6x−3x2 dan f′′(x)=6−6x
*). Syarat stasioner : f′(x)=0
f′(x)=0 6x−3x2=0
3x(2−x)=0
x=0 v x =2
Untuk x=0x=0 , nilai stasionernya f(0)=3.02−03=0 titik stasionernya (0,0) . Untuk x=2x=2 , nilai stasionernya f(2)=3.22−23=4 titik stasionernya (2,4).
*). Menentukan jenis stasionernya, gunakan turunan kedua : f′′(x)=6−6xf′′(x)=6−6x Untuk x=0→f′′(0)=6−6.0=6x=0→f′′(0)=6−6.0=6 (positif) , jenisnya minimum. Untuk x=2→f′′(2)=6−6.2=−6x=2→f′′(2)=6−6.2=−6 (negatif) , jenisnya maksimum. Artinya titik (0,0) adalah titik balik minimum dan titik (2,4) adalah titik balik maksimum.
iii). Berdasarkan fungsi y=3x2−x3,y=3x2−x3, kita substitusi beberapa nilai xx yaitu : Untuk xx semakin besar, nilai yy semakin besar negatif (ke bawah) dan untuk xx semakin kecil, nilai yy semakin besar positif (ke atas).
2. Gambarkan grafik berikut dengan menggunakan konsep turunan.
Titik stasioner diperoleh berada di titik (1, -1) sebagai berikut:
Interval naik atau turun pada fungsi:
Pada fungsi tidak terdapat titik belok karena 2 tidak sama dengan nol, sepertii berikut:Titik optimum berada di titik (1, -1) dengan melakukan uji titik stasioner ke turunan kedua fungsi, , dimana f''(x)=2>0. Sehingga grafik fungsi dengan konsep turunan pada soal dapat kita gambarkan seperti di bawah ini:
Contoh soal 1
Perhatikan gambar dibawah ini.
Koordinat titik potong grafik dengan sumbu X adalah…
A. (-1, 0) dan (-8, 0)
B. (-1, 0) dan (8, 0)
C. (1, 0) dan (-8, 0)
D. (1, 0) dan (8, 0)
E. (2, 0) dan (5, 0)
Pembahasan / penyelesaian soal
Berdasarkan grafik fungsi kuadrat diatas kita ketahui:
- titik balik xp = 9/2
- titik balik yp = -49/4
- y = 8
Sehingga kita dapat a = 2
b2 – 4 . a . c = 49
92 – 4 . 1 . c = 49
81 – 4c = 49 atau 4c = 81 – 49 = 32
c = 32
y = ax2 + bx + c
y = xp – 9x + c
Untuk menentukan titik potong x kita lakukan pemfaktoran sebagai berikut:
xp – 9x + 8 = 0
(x1 – 8) (x2 – 1) = 0
x1 = 8 dan x2 = 1
Jadi titik potong sumbu X adalah (8,0) dan (1,0). Soal ini jawabannya D.
Contoh soal 2
Selidikilah apakah grafik fungsi berikut memotong sumbu X, menyinggung sumbu X atau tidak memotong sumbu X.
- y = x2 + 9x + 20
- y = 2x2 – 3x + 1
Pembahasan / penyelesaian soal
- a = 1 dan D = b2 – 4ac = 92 – 4 . 1 . 20 = 81 – 80 = 1. Karena a > 0 dan D > 0 maka grafik fungsi kuadrat memotong sumbu X.
- a = 2 dan D = b2 – 4ac = -32 – 4 . 2 . 1 = 9 – 8 = 1. Karena a > 0 dan D > 0 maka grafik fungsi kuadrat memotong sumbu X.
Perhatikan gambar fungsi kuadrat dibawah ini.
Persamaan fungsi kuadrat grafik diatas adalah…
A. y = x2 – 2x + 15
B. y = x2 – 2x – 15
C. y = x2 + 2x + 15
D. y = x2 – 8x – 15
E. y = x2 – 8x + 15
Pembahasan / penyelesaian soal
Berdasarkan grafik fungsi kuadrat diatas kita ketahui:
- x1 = -5
- x2 = -3
- y = 15
Fungsi kuadrat dibentuk dengan cara sebagai berikut:
- y = a (x – x1) (x – x2)
- y = a (x – (-5)) (x – (-3))
- y = a (x + 5) (x + 3)
- y = a (x2 + 3x + 5 x + 15)
- y = a (x2 + 8x + 15)
Selanjutnya kita tentukan nilai a dengan subtitusi nilai x = 0 dan y = 15 sehingga didapat:
- 15 = a (02 + 8 . 0 + 15)
- 15 = a . 15
- a = 15/15 = 1
Jadi fungsi kuadratnya adalah:
- y = 1 (x2 + 8x + 15)
- y = x2 + 8x + 15
Jadi soal ini jawabannya C.
https://www.kompas.com/skola/read/2020/11/18/174944769/menggambar-grafik-fungsi-pada-konsep-turunan?page=all
https://soalfismat.com/contoh-soal-fungsi-kuadrat-dan-pembahasannya/
Tidak ada komentar:
Posting Komentar