Indah Putri Lestari (17)
XI IPS 2
Matematika
Jawaban Matematika PAS
no 26
- Bayangan titik A(4, 6) karena refleksi terhadap garis y = 2, yang kemidian di lanjutkan dengan refleksi terhadap garis x = -1
Penyelesaian Soal
Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x
Pencerminan terhadap garis y = -x
A(a, b) → gr y = -x → A'(-b, -a)
A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)
no 27
(x, y) dicerminkan thp sumbu x : (x, -y) kemudian
no 29
Step-1 pencerminan garis x = k
Untuk x = 2
(x' , y') = (2(2) - x, y)
(x' , y') = (4 - x, y) akan disubtitusi ke Step-2
Step-2 translasi (- 3, 4)
Translasi (a, b) dengan a = -3 dan b = 4.
(x", y") = (x' + (- 3), y' + 4)
(x", y") = (4 - x + (- 3), y + 4)
(x", y") = (1 - x, y + 4)
Sehingga, x" = 1 - x dan y" = y + 4
Setelah diatur dengan pindah ruas menjadi
Substitusikan ke bentuk awal x²+ y² = 4
⇔ (1 - x")² + (y" - 4)² = 4
Selanjutnya tanda aksen dapat dihilangkan
⇔ (1 - x)² + (y - 4)² = 4
⇔ x² - 2x + 1 + y² - 8y + 16 = 4
⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0
Kesimpulan
Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran
no 30
A(3,-2)
dipetakan oleh T(1 -2)
x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4
Bayangan A = A' = (4,-4)
lanjut rotasi [O , 90°]
x" = -y' = -(-4) = 4
y" = x' = 4
Bayangan akhir = A" = (4,4)
no 31
x' = x
y' = -y
Bayangan
y = x² + 3x + 3
-y' = x'² + 3x' + 3
y = -x² - 3x - 3
• lanjut dilatasi [O, 4]
x' = 4x → x = 1/4 x'
y' = 4y → y = 1/4 y'
Bayangan akhir
y = -x² - 3x - 3
1/4 y' = -(1/4 x')² - 3(1/4 x') - 3
1/4 y = -1/16 x² - 3/4 x - 3
Kedua ruas kalikan 4
y = -1/4 x² - 3x - 12 ✔
no 33
50.000, 55.000, 60.000,....
maka
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000
Tidak ada komentar:
Posting Komentar