Senin, 05 April 2021

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA

Indah Putri Lestari (7)

XI IPS 2

Matematika

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA

Integral adalah bentuk penjumlahan berkesinambungan (kontinu) yang merupakan anti turunan atau kebalikan dari turunan. Adapun contoh bentuk turunan adalah sebagai berikut.

Rumus Dasar Integral

Luas Daerah yang Dibatasi Kurva

Untuk menghitung luas daerah yang dibatasi suatu kurva dengan sumbu x dapat kita gunakan konsep integral tentu

Perhatikan Ilustrasi berikut

268

\begin{array}{|c|c|}\hline \multicolumn{2}{|c|}{\textbf{Luas Daerah}}\\\hline \textrm{Di Atas Sumbu X}&\textrm{Di Bawah Sumbu X}\\\hline &-\displaystyle \int_{a}^{b}f(x)\: \: dx\\ \displaystyle \int_{a}^{b}f(x)\: \: dx&atau\\ &\displaystyle \int_{b}^{a}f(x)\: \: dx\\\hline \end{array}.

Misalkan kita diberikan gambar berikut,

269

maka luas  A_{1}\: \textrm{dan}\: A_{2}  adalah:

L_{\displaystyle A_{1}\: \textrm{dan}\: \displaystyle A_{2}}=\displaystyle \int_{b}^{c}f(x)\: dx-\displaystyle \int_{a}^{b}f(x)\: dx.

B. Volume Benda Putar

\boxed{V=\pi \displaystyle \int_{a}^{b}\left ( f(x) \right )^{2}\: \: dx=\pi \displaystyle \int_{a}^{b}y^{2}\: \: dx}.

Perhatikanlah ilustrasi jika suatu bidang datar dirotasikan terhadap sumbu Y

270

Penggunaan Integral

Pada penjelasan sebelumnya integral dapat digunakan untuk mencari luas suatu bidang sebagai fungsi pada interval a \le x \le b  dan dibatasi sumbu x sebagaimana proses integral tentu. Lihat tabel berikut:

Jenis KegunaanBatasanLuas (A)Keterangan
Luas grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
A =\int^b_a f(x) dxLuas bidang berada pada:

  • Atas sumbu x, atau
  • Bawah sumbu x
Luas antara dua grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
A =\int^b_a f(x) - g(x) dxf(x) > g(x) pada selang a ≤ x ≤ b
Luas antara dua grafik dengan ordo maksimal 2
  •  Grafik f(x)
  •  Grafik g(x)
A = \frac{D \sqrt{D}}{6a^2}Determinan (D) didapat dari f(x) = g(x) menjadi ax2 + bx + c = 0

Pada penggunaan lebih lanjut, integral dapat digunakan untuk mencari volume. Volume didapat dari suatu bidang yang mengelilingi/berputar pada suatu sumbu. Metode untuk menghitung volume benda putar adalah metode cakram dan metode kulit.

Metode Cakram

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu xV = \int^b_a \pi [f(x)]^2) dx
  •  Grafik f(y)
  •  a ≤ y ≤ b
  •  Sumbu y
Sumbu yV = \int^b_a \pi [f(y)]^2) dy
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu xV = \int^b_a [f(x)]^2 - [g(x)]^2) dx
  •  Grafik f(y)
  •  Grafik g(y)
  •  a ≤ y ≤ b
Sumbu yV = \int^b_a [f(y)]^2 - [g(y)]^2) dy

Metode Kulit

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu yV = 2 \pi \int^b_a x \cdot f(x) dx
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu yV = 2 \pi \int^b_a x \cdot [f(x) - g(x)] dx


Contoh soal 1

\begin{array}{lp{16.0cm}}\\ \fbox{1}.&\textrm{Tentukanlah luas daerah bidang berikut dan tentukan pula volumenya seandainya bidang yang diarsir tersebut diputar terhadap sumbu X} \end{array}\\.

271

Jawab:

\begin{array}{lll}\\ \begin{aligned}L_{\textrm{Arsiran}}&=\displaystyle \int_{1}^{3}2x\: dx\\ &=\displaystyle \left [ x^{2} \right ]_{1}^{3}\\ &=\left ( 3 \right )^{2}-\left ( 1 \right )^{2}\\ &=9-1\\ &=8\quad \textbf{satuan luas}\\ &\\ &\\ &\\ &\\ & \end{aligned}&\textbf{dan}&\begin{aligned}V_{\textrm{Benda putar}}&=\pi \displaystyle \int_{1}^{3}\left ( y \right )^{2}\: dx=\pi \displaystyle \int_{1}^{3}\left ( 2x \right )^{2}\: dx\\ &=\pi \displaystyle \int_{1}^{3}4x^{2}\: dx\\ &=\pi \left [ \displaystyle \frac{4x^{3}}{3} \right ]_{1}^{3}\\ &=\pi \left ( \displaystyle \frac{4\times 3^{3}}{3} \right )-\pi \left ( \displaystyle \frac{4\times 1^{3}}{3} \right )\\ &=36\pi -\displaystyle \frac{4}{3}\pi \\ &=34\displaystyle \frac{2}{3}\pi \quad \textbf{satuan volum} \end{aligned} \end{array}

Contoh soal 2

\begin{array}{ll}\\ \fbox{2}.&\textrm{Jika}\: f(x)=\left ( x-2 \right )^{2}-4\: \: \textrm{dan}\: \: g(x)=-f(x),\: \textrm{maka luas daerah yang di batasi kurva \textit{f} dan \textit{g} adalah ....\textbf{(UAN 2003)}} \end{array}\\ \begin{array}{lll}\\\\ .\quad&a.&10\displaystyle \frac{2}{3}\: \: \textrm{satuan luas}\\\\ &b.&21\displaystyle \frac{1}{3}\: \: \textrm{satuan luas}\\\\ &c.&22\displaystyle \frac{2}{3}\: \: \textrm{satuan luas}\\\\ &d.&42\displaystyle \frac{2}{3}\: \: \textrm{satuan luas}\\\\ &e.&45\displaystyle \frac{1}{3}\: \: \textrm{satuan luas} \end{array}.

Jawab:

Perhatikan Ilustrasi berikut

274

 \begin{aligned}\displaystyle \int_{0}^{4}\left ( g(x)-f(x) \right )\: \: dx&=\displaystyle \int_{0}^{4}\left ( 4x-x^{2} \right )-\left ( x^{2}-4x \right )\: \: dx\\ &=\displaystyle \int_{0}^{4}\left ( 8x-2x^{2} \right )\: \: dx\\ &=\displaystyle \left [4x^{2}-\frac{2}{3}x^{3} \right ]_{0}^{4}\\ &=\displaystyle \left ( 4.4^{2}-\frac{2}{3}.4^{3} \right )-\left ( 4.0^{2}-\frac{2}{3}.0^{3} \right )\\ &=\displaystyle \left ( 64-\frac{2}{3}.64 \right )-0\\ &=\displaystyle \frac{64}{3}=21\frac{1}{3}\: \: \textrm{satuan luas} \end{aligned}.

Contoh soal 3

\begin{array}{ll}\\ \fbox{3}.&\textrm{Diketahui parabola}\: \: f_{1}(x)=a_{1}x^{2}+b_{1}x+c_{1}\: \: \textrm{dan}\: \: f_{2}(x)=a_{2}x^{2}+b_{2}x+c_{2}.\\ &\textrm{Titik potong kedua para bola tersebut dapat cari dengan}\\ &\\ &f_{1}(x)=f_{2}(x)\: \: \Leftrightarrow \: \: a_{1}x^{2}+b_{1}x+c_{1}=a_{2}x^{2}+b_{2}x+c_{2}\\ &\: \, \, \qquad\qquad\qquad \Leftrightarrow \: ax^{2}+bx+c=0.\\ &\\ &\textrm{Jika kedua parabola berpotongan di dua titik, tunjukkan bahwa luas daerah antara} \\ &\textrm{kedua parabola tersebut dapat dinyatakan dengan}\: \: \: \displaystyle \textbf{L}=\frac{\textbf{D}\sqrt{\textbf{D}}}{\textbf{6a}^{\textbf{2}}} \\\end{array}.

Bukti:

ax^{2}+bx+c=0\: \begin{cases} &x_{1}=\displaystyle \frac{-b+ \sqrt{b^{2}-4ac}}{2a} \\ & \\ &x_{2}=\displaystyle \frac{-b- \sqrt{b^{2}-4ac}}{2a} \end{cases}\\ \begin{aligned}L&=\displaystyle \int_{\frac{-b- \sqrt{b^{2}-4ac}}{2a}}^{\frac{-b+ \sqrt{b^{2}-4ac}}{2a}}\: \left ( ax^{2}+bx+c \right )\: \: dx=\left [ \displaystyle \frac{ax^{3}}{3}+\frac{bx^{2}}{2}+cx \right ]_{\frac{-b- \sqrt{b^{2}-4ac}}{2a}}^{\frac{-b+ \sqrt{b^{2}-4ac}}{2a}}\\ &=\left [ \displaystyle \frac{a}{3}\left ( \frac{-b+ \sqrt{b^{2}-4ac}}{2a} \right )^{3}+\displaystyle \frac{b}{2}\left ( \frac{-b+ \sqrt{b^{2}-4ac}}{2a} \right )^{2}+c\left ( \frac{-b+ \sqrt{b^{2}-4ac}}{2a} \right ) \right ]\\ &\quad -\left [ \displaystyle \frac{a}{3}\left ( \frac{-b- \sqrt{b^{2}-4ac}}{2a} \right )^{3}+\displaystyle \frac{b}{2}\left ( \frac{-b- \sqrt{b^{2}-4ac}}{2a} \right )^{2}+c\left ( \frac{-b- \sqrt{b^{2}-4ac}}{2a} \right ) \right ]\\ &=\displaystyle \frac{a}{24a^{3}}\left [ \left ( \sqrt{D}^{3}-3\sqrt{D}^{2}b+3\sqrt{D}b^{2}-b^{3} \right )+\left ( \sqrt{D}^{3}+3\sqrt{D}^{2}b+3\sqrt{D}b^{2}+b^{3} \right ) \right ]\\ &\quad +\displaystyle \frac{b}{8a^{2}}\left [ \left ( b^{2}-2b\sqrt{D}+\sqrt{D}^{2} \right )-\left ( b^{2}+2b\sqrt{D}+\sqrt{D}^{2} \right ) \right ]+\displaystyle \frac{c}{2a}\left [ \left ( -b+\sqrt{D} \right )-\left ( -b-\sqrt{D} \right ) \right ]\\ &=\displaystyle \frac{1}{24a^{2}}\left [ 2\sqrt{D}^{3}+6\sqrt{D}b^{2} \right ]+\displaystyle \frac{b}{8a^{2}}\left [ -4b\sqrt{D} \right ]+\displaystyle \frac{c}{2a}\left [ 2\sqrt{D} \right ]\\ &=\displaystyle \frac{\sqrt{D}^{3}}{12a^{2}}+\frac{b^{2}\sqrt{D}}{4a^{2}}-\frac{b^{2}\sqrt{D}}{2a^{2}}+\frac{c\sqrt{D}}{a}=\displaystyle \frac{D\sqrt{D}}{12a^{2}}+\frac{b^{2}\sqrt{D}}{4a^{2}}-\frac{b^{2}\sqrt{D}}{2a^{2}}+\frac{c\sqrt{D}}{a}\\ &=\displaystyle \frac{\sqrt{D}}{12a^{2}}\left [ D+3b^{2}-6b^{2}+12ac \right ]\\ \end{aligned}

\begin{aligned}&=\displaystyle \frac{\sqrt{D}}{12a^{2}}\left [ \left ( b^{2}-4ac \right )-3b^{2}+12ac \right ]\\ &=\displaystyle \frac{\sqrt{D}}{12a^{2}}\left [ -2b^{2}+8ac \right ]=-\displaystyle \frac{\sqrt{D}}{6a^{2}}\left [ b^{2}-4ac \right ]=-\frac{\sqrt{D}}{6a^{2}}\left [ D \right ]\\ &=-\frac{D\sqrt{D}}{6a^{2}},\quad \textbf{luas tidak mungkin negatif}\\ L&=\displaystyle \frac{D\sqrt{D}}{6a^{2}}\quad \blacksquare \end{aligned}.

Contoh soal 4

\begin{array}{ll}\\ \fbox{4}.&\textrm{Tentukan volume benda putar yang terbentuk, jika suatu daerah yang dibatasi oleh kurva }\\ &y^{2}=x\: \: \textrm{dan}\: \: y=x\: \textrm{diputar mengelilingi sumbu X} \\\end{array}.

Jawab:

Perhatikanlah ilustrasi gambar berikut ini

275.

\begin{array}{|r|l|l|}\hline \multicolumn{3}{|c|}{\textrm{Langkah-langkah}}\\\hline \textrm{Pertama (Mencari Batas)}&\textrm{Kedua (Menentukan Volumenya)}&\textrm{Keterangan}\\\hline \begin{aligned}y&=y\\ x^{2}&=x\\ x^{2}-x&=0\\ x\left ( x-1 \right )&=0\\ x=0\: \: \textrm{atau}\: \: x&=1\\ &\\ &\\ & \end{aligned}&\begin{aligned}V&=\pi \displaystyle \int_{a}^{b}\left ( y_{1}^{2}-y_{2}^{2} \right )\: \: dx\\ &=\pi \displaystyle \int_{0}^{1}\left ( x-x^{2} \right )\: \: dx\\ &=\pi \left [ \displaystyle \frac{1}{2}x^{2}-\frac{1}{3}x^{3} \right ]_{0}^{1}\\ &=\pi \left [ \displaystyle \frac{1}{2}-\frac{1}{3} \right ]\\ V&=\displaystyle \frac{1}{6}\pi \end{aligned}&\begin{aligned}&\textnormal{Perhatikan bahwa;}\\ &y^{2}=x\Rightarrow y=\sqrt{x},\: \textrm{dianggap sebagai}\: \: y_{1}\\ &\textnormal{Sehingga}\: y_{1}-\textrm{nya adalah}\: \: \sqrt{x}\\ &\textnormal{dan}\: \: y=x\: \: \textrm{dianggap sebagai}\: \: y_{2}\\ &\left ( y_{1}^{2}-y_{2}^{2} \right )=\left ( \left ( \sqrt{x} \right )^{2}-\left ( x \right )^{2} \right )=x-x^{2}\end{aligned} \\\hline \multicolumn{2}{|l|}{\textrm{Jadi, volume dari benda putar tersebut dalam satuan volum adalah}\: \: \displaystyle \frac{1}{6}\pi }&\\\hline \end{array}.

Contoh soal 5

\begin{array}{ll}\\ \fbox{5}.&\textrm{Tentukan volume benda putar yang terbentuk, jika suatu daerah yang dibatasi oleh kurva }\\ &y=2x\: ,\: y=x,\: x=1,\: \textrm{dan}\: \: x=3\: \textrm{diputar mengelilingi sumbu X} \\\end{array}.

Jawab:

Perhatikanlah ilustrasi gambar berikut

276

\begin{array}{|l|l|}\hline \multicolumn{2}{|c|}{\textrm{Langkah-Langkah}}\\\hline \textrm{Batas}&\textrm{Menentukan Volumenya}\\\hline x=1\: \: \textrm{dan}\: \: x=3&\begin{aligned}V&=\displaystyle \pi \int_{a}^{b}\left ( f^{2}(x)-g^{2}(x) \right )\: \: dx\\ &=\displaystyle \pi \int_{1}^{3}\left ( \left ( 2x \right )^{2}-\left ( x \right )^{2} \right )\: \: dx\\ &=\displaystyle \pi \int_{1}^{3}3x^{2}\: \: dx\\ &=\displaystyle \pi \left [ x^{3} \right ]_{1}^{3}\\ &=\displaystyle \pi \left ( 3^{3} \right )-\pi \left ( 1^{3} \right )\\ &=27\pi -1\pi \\ V&=26\pi\: \textbf{Satuan Volum} \end{aligned}\\\hline \end{array}

https://ahmadthohir1089.wordpress.com/2015/08/30/insyaallah-25/

https://www.quipper.com/id/blog/mapel/matematika/integral/

https://www.studiobelajar.com/integral-tentu-penggunaan-integral/



Tidak ada komentar:

Posting Komentar

REMEDIAL SOAL PAT

Indah Putri Lestari (17) XI IPS 2 Matematika JAWABAN SOAL UNTUK REMEDIAL PAT