Indah Putri Lestari (16)
XI IPS 2
Matematika
SOAL PENYELESAIAN PERSAMAAN MATRIKS
Menghitung Determinan Matriks Berordo 3x3
Misalkan,adalah matriks berordo 3x3. Terdapat dua cara yang bisa dilakukan untuk mencari determinannya, yaitu menggunakan aturan Sarrus dan metode minor-kofaktor.
Contoh soal 1
Tentukan determinan matriks berikut ini menggunakan aturan Sarrus dan metode minor-kofaktor!
Pembahasan:
- Aturan Sarrus
Agar lebih mudah, kita tulis kembali elemen-elemen pada kolom ke-1 dan ke-2 di sebelah kanan matriks A sebagai berikut:
Kemudian, kita tarik garis putus-putus seperti gambar di atas. Kalikan elemen-elemen yang terkena garis putus-putus tersebut. Hasil kali elemen yang terkena garis putus-putus berwarna biru diberi tanda positif (+), sedangkan hasil kali elemen yang terkena garis putus-putus berwarna oranye diberi tanda negatif (-). Ingat urutan penulisannya juga, ya!
|
Nilai determinan dari matriks A diatas adalah :
A. -6
B. -12
C. 2
D. 10
Pembahasan
|
Maka determinan matriks A adalah ....
A. -9
B. -10
C. -6
D. 8
Pembahasan
Menghitung Determinan Berordo Matriks 2x2
Misalkan,adalah matriks berordo 2x2. Elemen a dan d terletak pada diagonal utama, sedangkan elemen b dan c terletak pada diagonal kedua. Determinan matriks A dapat diperoleh dengan mengurangkan hasil kali elemen-elemen diagonal utama dengan hasil kali elemen-elemen diagonal kedua.
|
Nilai determinan dari matriks A di atas adalah ....
A. -2
B. -12
C. 2
D. 10
Pembahasan
|
Jika nilai determinan matriks B adalah 4, maka nilai x adalah ......?
A. 4
B. 3
C. 2
D. 1
Pembahasan
|
|
Agar determinan matriks A sama dengan dua kali determinan B, maka nilai x yang memenuhi adalah....
A. x = -6 atau x = -2
B. x = 6 atau x = -2
C. x = -6 atau x = 2
D. x = 3 atau x = 4
Pembahasan
Keterangan :
KE : Kofaktor Elemen Matriks
a : Baris ke-a
b : Kolom ke-b
NE : Nilai elemen Minor Matriks
Contoh :
Tentukan kofaktor dari minor matriks berikut ini :
KEab = (-1)a+b x NEab
KE11 = (-1)1+1 x NE11 = (-1)2 x (-3) = 1 x -3 = -3
KE12 = (-1)1+2 x NE12 = (-1)3 x (-6) = -1 x (-6) = 6
KE13 = (-1)1+3 x NE12 = (-1)4 x (-3) = 1 x (-3) = -3
KE21 = (-1)2+1 x NE21 = (-1)3 x (-6) = -1 x (-6) = 6
KE22 = (-1)2+2 x NE22 = (-1)4 x (-12) = 1 x (-12) = -12
KE23 = (-1)2+3 x NE23 = (-1)5 x (-6) = -1 x (-6) = 6
KE31 = (-1)3+1 x NE31 = (-1)4 x (-3) = 1 x (-3) = -3
KE32 = (-1)3+2 x NE32 = (-1)5 x (-6) = -1 x (-6) = 6
KE33 = (-1)3+3 x NE33 = (-1)6 x (-3) = 1 x (-3) = -3
Maka kofaktornya adalah :
Mencari invers matriks berordo 3x3 dapat dilakukan dengan dua cara, yaitu dengan adjoin dan transformasi baris elementer. Hm, kira-kira seperti apa ya penjelasan lebih detailnya. Mari kita bahas satu persatu, ya.
- Invers matriks ordo 3x3 dengan adjoin
Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari kofaktor dari suatu matriks. Nah, dari kofaktor-kofaktor tersebut, kita dapat menentukan adjoin matriksnya, lho. Adjoin matriks merupakan transpose dari suatu matriks yang elemen-elemennya merupakan kofaktor dari elemen-elemen matriks tersebut.
Contoh soal 1
Tentukan invers matriks berikut dengan menggunakan adjoin!
Penyelesaian:
Oke, berdasarkan rumus di atas, kita membutuhkan determinan dan adjoin matriks A. Pertama, kita cari terlebih dahulu determinan matriks A menggunakan metode yang sudah dijelaskan sebelumnya. Bisa dengan cara aturan Sarrus ataupun metode minor-kofaktor. Misalnya, kita akan menggunakan metode Sarrus, sehingga:
Kemudian, kita tentukan adjoin matriks dengan mencari kofaktor matriks A tersebut.
Oleh karena itu,
Jadi,
Contoh soal 1
Tentukanlah invers dari matriks berikut.
Pembahasan:
Catatan: elemen-elemen yang berada di lingkar biru merupakan diagonal utama matriks A yang ditukar posisinya, sedangkan elemen-elemen yang berada di lingkar oranye merupakan diagonal kedua matriks A yang dikalikan dengan minus satu (-1).
Contoh soal 2
Menentukan matriks invers dari:
Jawaban:
Tidak ada komentar:
Posting Komentar